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Statistical Efficiency of Simultaneous Target and Sensors

Localization with Position Dependent Noise

Richard W. Osborne, IIIa, Yaakov Bar-Shaloma, Jemin Georgeb and Lance Kaplanb

aElectrical and Computer Engineering Department, University of Connecticut

bU.S. Army Research Laboratory

ABSTRACT

This work derives the Cramer-Rao lower bound (CRLB) for an acoustic target and sensor localization system
in which the noise characteristics depend on the location of the source. The system itself has been previously
examined, but without deriving the CRLB and showing the statistical efficiency of the estimator used. Two
different versions of the CRLB are derived, one in which direction of arrival (DOA) and range measurements
are available (“full-position CRLB”), and one in which only DOA measurements are available (“bearing-only
CRLB”). In both cases, the estimator is found to be statistically efficient; but, depending on the sensor-target
geometry, the range measurements may or may not significantly contribute to the accuracy of target localization.

Keywords: CRLB, FIM, estimator efficiency, acoustic localization, fusion

1. INTRODUCTION

In any estimation system the ultimate goal is to extract the maximum information from the available data. The
Fisher information matrix (FIM) provides a measure of the total information available from the observations of
the system, and its inverse provides the Cramer-Rao lower bound (CRLB) [1]. A statistically efficient estimator
is one in which the variance of the estimation error meets the CRLB, and, therefore, extracts all of the available
information from the observations.

The CRLB and statistical efficiency of an acoustic localization system will be examined here, based on the
system described in [6], which is meant to estimate the location of the source of a detected gunshot. Each sensor
node of the system is assumed to provide an estimated bearing (DOA) to the target, and, if the sensor node lies
within a certain field-of-view (FOV), a range estimate and bullet trajectory estimate as well. For those sensors
which provide estimated range, the noise term will be dependent on the position of the source. Each sensor
node’s estimates are passed to a fusion center to perform the overall estimation of the target position by fusing
all the local estimates.

A number of papers have examined the problem of target localization in passive sensor environments, including
[2, 4, 5, 8, 10–12]. The work of [11] generalizes the results of [4] to include sensor position uncertainty, however,
neither paper examines the CRLB to see whether the estimator is statistically efficient. In [2, 5, 8, 12], different
applications of localization with passive sensors are studied which also consider the CRLB. However, in [12],
no estimation scheme is shown to meet the CRLB. In [5] the ML estimation scheme examined is shown to be
statistically efficient only when a significant number of measurements are utilized. In none of the previously
mentioned papers were cases of position dependent measurement noise considered.

In this work, the CRLB of the central estimator (fuser) is derived for two cases: a “bearing-only” case, which
assumes that no range estimates are available from the sensor nodes, and a “full-position” case, which assumes
that range estimates are available in addition to the DOA.

Section 2 provides an overview of the system in question. Section 3 provides the expressions necessary to
evaluate the CRLB for the problem in question, both with and without the position dependent noise terms.
Section 4 describes the simulation scenarios and provides the results. Finally, Section 5 concludes the paper.

Proc. SPIE Conf. on Signal Proc., Sensor Fusion and Target Recognition, #8392-2, Baltimore, MD, April 2012.
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2. LOCALIZATION SYSTEM OVERVIEW

The system to be examined here will be identical to the one described in [6]. A brief overview of the system will
be provided here to introduce the concepts and notations.

A number of acoustic sensors are placed throughout a surveillance region with the intent of detecting gunfire
and estimating the position of the source. The target (source) location will be denoted as

T =

[
Tx

Ty

]

(1)

and the ith sensor location will be denoted as

Si =

[
Six

Siy

]

(2)

The problem will be assumed constrained to a two-dimensional plane for simplicity.

2.1 Sensor Nodes

Each sensor will provide at most five measurements (local estimates): the DOA angle to the shooter φ̂i, based
on the detection of the muzzle blast, the DOA angle of the shockwave from the bullet ϕ̂i, the time difference of
arrival (TDOA) between the muzzle blast and the shockwave τ̂i, and the sensor location Ŝix and Ŝiy (through
a GPS sensor at each node). Each measurement is assumed to be corrupted by zero-mean Gaussian noise,
with standard deviations of σφ, σϕ, στ , σix and σiy , respectively. The shockwave (and therefore the TDOA
measurement) will only be visible to sensor nodes which are within a limited field-of-view (FOV) around the
path of the bullet. The FOV will be π − 2θ, where

θ = sin−1

(
1

m

)

(3)

and m is the Mach number of the bullet, assumed here to be m = 2 [7].

The target bearing from the ith sensor node is

φi = tan−1

(
Ty − Siy

Tx − Six

)

(4)

and the DOA angle of the shockwave is

ϕi =

{
−π

2
− θ + ω if π + ω < φi <

3π
2
− θ + ω

π
2
+ θ + ω if π

2
+ θ + ω < φi < π + ω

(5)

where ω is the angle of the trajectory (counter-clockwise) with respect to the x-axis.

Sensor i will pass on the local estimates1

zi =





φ̂i

r̂i
ω̂i



 and Ŝi =

[
Ŝix

Ŝiy

]

(6)

to a fusion center, where φ̂i is the estimated target bearing, r̂i is the estimated target range obtained from ϕ̂i

and τ̂i using (7), and ω̂i is the estimated bullet trajectory angle. In view of (5), the estimated bullet trajectory
can be obtained directly from ϕ̂i and the standard deviation of ω̂i will be σϕ.

The estimated range will be [6]

r̂i =
cτ̂i

1− cos
(
φ̂i − ϕ̂i

) (7)

1We use similar notation and terminology as in [6].
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where c is the speed of sound (assumed to be known perfectly). The variance of the range estimate — which is
dependent on both range and bearing — can be approximated as [6]

σ2

ri(T, Si, ω) ≈
c2σ2

τ + r2i (σ
2

φ + σ2

ϕ) sin
2(φi − ϕi)

(
1− cos(φi − ϕi)

)2
(8)

The likelihood functions corresponding to the estimates zi and Ŝi are

p
(
zi|T, Si, ω

)
= N (zi;µzi ,Σzi) (9)

where

µzi =





φi

ri
ω



 and Σzi =





σ2

φ 0 0

0 σ2

ri(T, Si, ω) 0
0 0 σ2

ϕ



 (10)

and
p
(
Ŝi|Si) = N (Ŝi;Si,ΣSi

) (11)

where

ΣSi
=

[
σ2

ix 0
0 σ2

iy

]

(12)

The errors in (9) and (11) are assumed to be uncorrelated at each sensor and across the sensors.

The sensors are assumed to obtain their locations, albeit imperfectly, from GPS. 2 If desired, the algorithm
can perform simultaneous localization of the target and sensors. For the sensors, the GPS localization serves as
a prior and guarantees complete observability for the target-sensor complex. The final estimates of the sensor
locations can be slightly improved over their initial GPS estimates, but the improvement this makes to the final
target localization is negligible.

2.2 Centralized Fusion

The estimates zi and Ŝi from each sensor are passed on to a fusion center in order to determine the estimate x̂

by means of the Iterated Least Squares (ILS) estimator [1]. The parameter vector to be estimated is

x =
[
Tx Ty ω S1x S1y . . . Snx

Sny

]′
(13)

with observations

ŷ =






ŷ1

...
ŷn




 (14)

where

ŷi =

[
zi

Ŝi

]

(15)

In order to utilize the ILS estimation algorithm, an initial estimate of x is needed. It has been noted [6] that
the ILS estimator is sensitive to the initial estimate and may diverge if the initial estimate is too far from the
truth.

While the initialization of the target position could be performed by using the bearing and range measure-
ments (using the nodes with range measurements), the large variance of the range measurements was found to
occasionally cause divergence in the ILS algorithm. A more robust initialization was found to follow a similar

2If the sensor position estimates contain a common bias across sensors, the relative sensor registration will be unaffected
and the target estimate will exhibit the same bias.
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method to that used in [3]. This method of initialization will utilize only the available bearing measurements
from each sensor (4), which can be rewritten as








tanφ1 −1
tanφ2 −1

...
...

tanφn −1








︸ ︷︷ ︸

A

T =








S1x tanφ1 − S1y

S2x tanφ2 − S2y

...
Snx

tanφn − Sny








︸ ︷︷ ︸

b

(16)

and T can be solved as
T = A†b (17)

where A† is the (right) pseudo-inverse of A.

Also, note that (16) can be rewritten utilizing the expression

φi = cot−1

(
Tx − Six

Ty − Siy

)

(18)

which is simply (4) rewritten using the cotangent function. As suggested in [3], use of the cotangent function
has been made when the measured bearing is between 45◦ and 135◦ or between -45◦ and -135◦.

To complete the initialization of x, Si can be taken as Ŝi and ω can be taken as the average of ω̂i.

3. CRAMER-RAO LOWER BOUND

The CRLB provides a lower bound on the covariance matrix of the estimate x̂ as

E
[
(x̂− x) (x̂− x)

′] ≥ J−1 (19)

where J is the Fisher information matrix (FIM)

J = E
{
[∇xλ(x)] [∇xλ(x)]

′} (20)

and λ(x) is the negative log-likelihood function (NLLF)

λ(x) =

n∑

i=1

[
1

2
(zi − µzi(x))

′
Σzi(x)

−1 (zi − µzi(x)) +
1

2

(

Ŝi − Si

)′

Σ−1

Si

(

Ŝi − Si

)

+ ln
(
σri(x)

)
]

(21)

with the unnecessary constant terms omitted.

In view of (6), (10), and (12), the NLLF can be written as3

λ(x) =
1

2

n∑

i=1

[
1

σ2

φ

(

φ̂i − φi

)2

+
1

σ2
ri(T, Si, ω)

(r̂i − ri)
2
+

1

σ2
ϕ

(ω̂i − ω)
2
+

1

σ2

ix

(

Ŝix − Six

)2

+
1

σ2

iy

(

Ŝiy − Siy

)2

+ ln
(
σ2

ri(T, Si, ω)
)
]

(22)

Note that the noise term for the ith sensor node’s range estimate is dependent on the target-sensor geometry.

In order to deal with the position dependent noise term, the “full-position” FIM corresponding to (22) will
be broken into “bearing-only”4 and “range-only” FIMs

J = Jb + Jr (23)

where Jb denotes the “bearing-only” FIM calculated when ignoring the range term of (22); and Jr denotes the
“range-only” FIM calculated for only the range portion of (22).

Two versions of the CRLB will be evaluated in the sequel: the bearing-only CRLB, J−1

b , and the full-position
CRLB, J−1.

3Note that ω is decoupled from the remaining terms of x, and the ML estimation of ω amounts to simple averaging,
with a CRLB of σ2

ϕ/n.
4This is a slight misnomer since the sensor position terms will also be included in the bearing-only FIM.
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3.1 Bearing-Only FIM

The bearing-only FIM Jb will be straightforward, as none of the variances in this case are dependent on x.
The gradient of (22), necessary for calculation of the FIM, is detailed in Appendix B. The necessary terms to
calculate the FIM are

E

{
∂λ

∂Tx

∂λ

∂Tx

}

=

n∑

i=1

1

σ2

φ

(
Ty − Siy

r2i

)2

(24)

E

{
∂λ

∂Tx

∂λ

∂Ty

}

= −
n∑

i=1

1

σ2

φ

(
Ty − Siy

r2i

)(
Tx − Six

r2i

)

(25)

E

{
∂λ

∂Tx

∂λ

∂ω

}

= 0 (26)

E

{
∂λ

∂Tx

∂λ

∂Six

}

= −
1

σ2

φ

(
Ty − Siy

r2i

)2

(27)

E

{
∂λ

∂Tx

∂λ

∂Siy

}

=
1

σ2

φ

(
Ty − Siy

r2i

)(
Tx − Six

r2i

)

(28)

E

{
∂λ

∂Ty

∂λ

∂Ty

}

=

n∑

i=1

1

σ2

φ

(
Tx − Six

r2i

)2

(29)

E

{
∂λ

∂Ty

∂λ

∂ω

}

= 0 (30)

E

{
∂λ

∂Ty

∂λ

∂Six

}

=
1

σ2

φ

(
Ty − Siy

r2i

)(
Tx − Six

r2i

)

(31)

E

{
∂λ

∂Ty

∂λ

∂Siy

}

= −
1

σ2

φ

(
Tx − Six

r2i

)2

(32)

E

{
∂λ

∂ω

∂λ

∂ω

}

=
n

σ2
ϕ

(33)

E

{
∂λ

∂ω

∂λ

∂Six

}

= 0 (34)

E

{
∂λ

∂ω

∂λ

∂Siy

}

= 0 (35)

E

{
∂λ

∂Six

∂λ

∂Six

}

=
1

σ2

φ

(
Ty − Siy

r2i

)2

+
1

σ2

ix

(36)

E

{
∂λ

∂Six

∂λ

∂Siy

}

= −
1

σ2

φ

(
Ty − Siy

r2i

)(
Tx − Six

r2i

)

(37)

E

{
∂λ

∂Siy

∂λ

∂Siy

}

=
1

σ2

φ

(
Tx − Six

r2i

)2

+
1

σ2

iy

(38)

The matrix Jb can then be constructed with the appropriate entries from (24)–(38).

3.2 Range-Only FIM

Since the variance of the range estimate from each sensor node (for which the shooter is in the FOV necessary
to obtain a range estimate) is dependent on x, the expressions for the entries of the FIM in the range-only case
are more complicated. The terms for the gradient of (22) (including the range terms) are detailed in Appendix
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C. The necessary terms to calculate the FIM Jr are

E

{
∂λ

∂Tx

∂λ

∂Tx

}

= 2
n∑

i=1

a2i +
n∑

i=1

(Tx − Six)
2

r2i σ
2
ri

(39)

E

{
∂λ

∂Tx

∂λ

∂Ty

}

= 2

n∑

i=1

aibi +

n∑

i=1

(Tx − Six)(Ty − Siy )

r2i σ
2
ri

(40)

E

{
∂λ

∂Tx

∂λ

∂ω

}

= 2

n∑

i=1

aici (41)

E

{
∂λ

∂Tx

∂λ

∂Six

}

= −2a2i −
(Tx − Six)

2

r2i σ
2
ri

(42)

E

{
∂λ

∂Tx

∂λ

∂Siy

}

= −2aibi −
(Tx − Six)(Ty − Siy )

r2i σ
2
ri

(43)

E

{
∂λ

∂Ty

∂λ

∂Ty

}

= 2

n∑

i=1

b2i +

n∑

i=1

(Ty − Siy )
2

r2i σ
2
ri

(44)

E

{
∂λ

∂Ty

∂λ

∂ω

}

= 2

n∑

i=1

bici (45)

E

{
∂λ

∂Ty

∂λ

∂Six

}

= −2aibi −
(Tx − Six)(Ty − Siy )

r2i σ
2
ri

(46)

E

{
∂λ

∂Ty

∂λ

∂Siy

}

= −2b2i −
(Ty − Siy )

2

r2i σ
2
ri

(47)

E

{
∂λ

∂ω

∂λ

∂ω

}

= 2

n∑

i=1

c2i (48)

E

{
∂λ

∂ω

∂λ

∂Six

}

= −2aici (49)

E

{
∂λ

∂ω

∂λ

∂Siy

}

= −2bici (50)

E

{
∂λ

∂Six

∂λ

∂Six

}

= 2a2i +
(Tx − Six)

2

r2i σ
2
ri

(51)

E

{
∂λ

∂Six

∂λ

∂Siy

}

= 2aibi +
(Tx − Six)(Ty − Siy )

r2i σ
2
ri

(52)

E

{
∂λ

∂Siy

∂λ

∂Siy

}

= 2b2i +
(Ty − Siy )

2

r2i σ
2
ri

(53)

E

{
∂λ

∂Six

∂λ

∂Sjx

}∣
∣
∣
∣
i6=j

= 0 (54)

E

{
∂λ

∂Six

∂λ

∂Sjy

}∣
∣
∣
∣
i6=j

= 0 (55)

E

{
∂λ

∂Siy

∂λ

∂Sjy

}∣
∣
∣
∣
i6=j

= 0 (56)
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where

ai =
sin(φi − ϕi)

1− cos(φi − ϕi)

(
sign(Tx − Six)(σ

2

φ + σ2

ϕ)ri sin(ϕi)

(1− cos(φi − ϕi))σ2
ri

−
Ty − Siy

r2i

)

(57)

bi = −
sin(φi − ϕi)

1− cos(φi − ϕi)

(
sign(Tx − Six)(σ

2

φ + σ2
ϕ)ri cos(ϕi)

(1 − cos(φi − ϕi))σ2
ri

−
Tx − Six

r2i

)

(58)

ci =
r2i (σ

2

φ + σ2

ϕ) sin(φi − ϕi) cos(φi − ϕi)

(1− cos(φi − ϕi))2σ2
ri

−
sin(φi − ϕi)

1− cos(φi − ϕi)
(59)

The matrix Jr can then be constructed with the appropriate entries from (39)–(56).

4. SIMULATION RESULTS

The simulation scenarios examined here include the scenarios of [6] and an additional modified scenario with
fewer sensors. For each scenario, the Mach number of the bullet is assumed to be m = 2, and the speed of sound
is assumed to be c = 342m/sec. The measurement noise standard deviations are σφ = σϕ = 4◦, στ = 1ms, and
σix = σiy = 2m. The simulations were performed for 100 Monte Carlo runs for each scenario.

In Scenarios 1 and 2, there are five sensor nodes located at

S =

[
127 20 90 136 182
107 22 0 68 59

]

(60)

In Scenario 1, the target is located at T =
[
50 50

]′
and the bullet is fired at a trajectory of ω = 30◦

(counter-clockwise from the x-axis). Due to the location of the sensors and the trajectory of the bullet, only
sensors 1, 4 and 5 receive the shockwave and are able to send range and bullet trajectory estimates to the fusion
center.

The results of Scenario 1 are shown in Figure 1 and 2. Each figure shows the true locations of the target
and sensors, along with the corresponding 95% error ellipses. Figure 1 shows the error ellipses corresponding to
the sample covariance matrix calculated from the estimation errors over the 100 Monte Carlo runs when range
measurements are not available at the fusion center (dashed line), and the covariance matrix from the bearing-
only CRLB (solid line). Figure 2 shows the covariance matrix calculated from the estimation errors when both
range and bearing data are available at the fusion center, and the covariance matrix from the full-position CRLB.

The covariance matrices from the bearing-only CRLB and the full-position CRLB closely match the covari-
ances of the estimation errors calculated from the simulation. This first indicates that the ILS estimation carried
out by the fusion center is statistically efficient. Additionally, the fact that the two CRLB matrices closely match
suggests that very little information is gained from the range estimates sent from sensors 1, 4 and 5. This is due
to the fact that the target-sensor geometry is such that the target bearing measurements alone can achieve good
localization.

In Scenario 2, the target is located at T =
[
150 −50

]′
and the bullet is fired at a trajectory of ω = 170◦.

Due to the location of the sensors and the trajectory of the bullet, only sensors 2 and 3 receive the shockwave
and are able to send range and bullet trajectory estimates to the fusion center.

The results of Scenario 2 are shown in Figures 3 and 4. Each figure once again shows the various 95%
error ellipses. Figure 3 shows the error ellipses of the bearing-only CRLB and the estimation errors when range
measurements are not available at the fusion center. Figure 4 shows the error ellipses of the full-position CRLB
and the estimation errors when both range and bearing data are available at the fusion center.

The covariance matrices from both cases of the CRLB again closely match those obtained from the estimation
errors, indicating that the estimator is once again efficient and the range estimates carry very little information.

Scenario 3 consists of an identical situation to Scenario 1, but with sensors 2 and 3 removed. In this case,
the geometry of the sensors and target are poor, with each sensor having very similar line-of-sight (LOS) angles
to the target.
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Figure 1: Scenario 1, bearing-only CRLB ellipses and
error ellipses of estimated target and sensor locations
(all 95%).
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Figure 2: Scenario 1, full-position CRLB ellipses and
error ellipses of estimated target and sensor locations
(all 95%)
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Figure 3: Scenario 2, bearing-only CRLB ellipses and
error ellipses of estimated target and sensor locations
(all 95%).
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Figure 4: Scenario 2, full-position CRLB ellipses and
error ellipses of estimated target and sensor locations
(all 95%).
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Figure 5: Scenario 3, bearing-only CRLB ellipses and
error ellipses of estimated target and sensor locations
(all 95%).
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Figure 6: Scenario 3, full-position CRLB ellipses and
error ellipses of estimated target and sensor locations
(all 95%).

Table 1: Normalized Estimation Error Squared (NEES) (95% probability region is [1.63, 2.41]).

NEES(T̂bo) NEES(T̂ ) NEES(T̂ ) wrt CRLBbo

Scenario 1 1.95 2.10 1.84
Scenario 2 2.16 1.97 2.00
Scenario 3 2.12 2.20 1.41

The results of Scenario 3 are shown in Figures 5 and 6. In this case, the error ellipses for the bearing-only
CRLB and the full-position CRLB no longer coincide. The covariance of the estimation errors closely match
their respective CRLB matrices, again indicating that the estimator is efficient.

Additionally, the normalized estimation error squared (NEES) for the source localization was examined for
each scenario, using both the bearing-only CRLB and the full-position CRLB to provide a statistical confirmation
of the efficiency of the estimator. In each case, the CRLB was evaluated at the true x. The NEES was calculated
for

(i) the fused position estimation errors using bearing-only measurements with the bearing-only CRLB,

(ii) the fused position estimation errors using full-position measurements with the full-position CRLB, and

(iii) the fused position estimation errors using full-position measurements with the bearing-only CRLB (to
quantify the benefit of range measurements).

The NEES results (with the 95% probability region based on the chi-square distribution with two degrees of
freedom and 100 Monte Carlo runs [1], being [1.63, 2.41]) are in Table 1. The first two columns (case (i) and
(ii) above) show that in all scenarios, with bearing-only or full position, the fused estimate of the target (source)
position matches the CRLB, i.e., it is statistically efficient.

The third column (case (iii) above) shows that the target position errors with full position measurements
match in Scenario 1 and 2 the bearing-only CRLB, i.e., the range availability does not contribute to the accuracy
of the fused estimate. However, in Scenario 3, the availability of the range reduces the MSE by 30% compared
to the bearing-only case.

Additionally, the aforementioned scenarios were simulated for multiple levels of angular measurements noise.
The standard deviations σφ and σϕ were varied from 10% to 150% of their original value of 4◦. The remaining
noise standard deviations remained the same as in the previous simulations.

9



0 0.5 1 1.5

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Measurement Noise Standard Deviation Scaling Factor

N
E

E
S

 

 

NEES(T̂ )
NEES(T̂bo)

NEES(T̂ ) wrt CRLBbo

95% Interval

Figure 7: Scenario 1, NEES for different levels of angular
measurement noise.
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Figure 8: Scenario 2, NEES for different levels of angular
measurement noise.
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Figure 9: Scenario 3, NEES for different levels of angular measurement noise.

Figure 7 shows the NEES of Scenario 1 (from Table 1) along with the 95% confidence regions. Figures 8 and
9 show identical figures for Scenarios 2 and 3, respectively.

Figures 7–9 mirror the results of Table 1, demonstrating statistical efficiency of the fused target position
estimate, with the exception of very inaccurate angular measurements and poor sensor-target geometry.

Figure 10 shows the target position RMSE (coordinate-combined) for Scenario 1, along with the CRLB, for
both the bearing-only and full-position cases. This figure also shows the 95% confidence region around the CRLB
for the sample RMSE over 100 Monte Carlo runs. Figures 11 and 12 show identical figures for Scenarios 2 and
3, respectively.

Figures 10 and 11 show that, over a range of angular measurement noise levels, the favorable geometry of
Scenarios 1 and 2 provide for very little differentiation in the performance of target localization with or without
range measurements. Figure 12 shows that, for the less favorable geometry of Scenario 3, the inclusion of range
measurements provides a significant increase in the accuracy of target localization.

Additionally, the two versions of the CRLB (bearing-only and full-position) can be compared to gain insights
into a particular scenario. The ratio of the area of the bearing-only CRLB ellipse to the full-position CRLB ellipse
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Figure 10: Scenario 1, target position RMSE for different levels of angular measurement noise and 95% probability
region around the CRLB.
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Figure 11: Scenario 2, target position RMSE for differ-
ent levels of angular measurement noise and 95% prob-
ability region around the CRLB.
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ent levels of angular measurement noise and 95% prob-
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Figure 13: Comparison of CRLB and CRLBbo (|J−1

b J |1/2) over a 2-d grid of shooter position (for a fixed aimpoint
at ⋆).

can be calculated as |J−1

b J |1/2. This is plotted over a two-dimensional grid corresponding to various shooter
locations in Figure 13, for sensor locations identical to Scenario 3. Figure 13 clearly shows the shooter locations
where the range measurements are most beneficial and the bearing-only localization will perform particularly
poorly.

5. CONCLUSIONS

The CRLB and statistical efficiency were examined for multiple scenarios of a localization system with position
dependent noise terms; specifically, a recently developed system utilizing acoustic gunfire detection sensors [6].
The CRLB was derived for both the case of sensor nodes which send both bearing and range measurements (“full-
position” CRLB) and those that do not (“bearing-only” CRLB). In cases where the sensor-target geometry
is favorable for angle-only localization, the bearing-only CRLB closely matches the actual estimation errors,
suggesting that there is little, if any, information contained in the range measurements in those cases. If the
geometry is poor, however, as in Scenario 3, the full-position CRLB is the only one that will closely match the
actual estimation errors. The results show both that the estimator used in this particular acoustic localization
system is efficient, and that the full-position CRLB could act as an accurate means of performance prediction
for such a system.

APPENDIX A. GENERAL FIM FOR MULTIVARIATE GAUSSIAN CASE

The FIM for the case of a multivariate Gaussian likelihood is as follows [9].

Assuming the likelihood of the parameter vector x given observations ŷ is distributed as N (µ(x),Σ(x)), the
NLLF (ignoring the irrelevant constant terms) is

λ(x) =
1

2
ln |Σ(x)| +

1

2

(
ŷ − µ(x)

)′
Σ(x)−1

(
ŷ − µ(x)

)
(61)
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The gradient terms of the FIM are

∂λ(x)

∂xi
=

1

2
tr

(

Σ−1(x)
∂Σ(x)

∂xi

)

−
1

2

(
ŷ − µ(x)

)′
Σ(x)−1

∂Σ(x)

∂xi
Σ(x)−1

(
ŷ − µ(x)

)′

−

[
∂µ(x)

∂xi

]′

Σ−1(x)
(
ŷ − µ(x)

)
(62)

where
x =

[
x1 x2 . . . xn

]′
(63)

The (i, j)th entry in the FIM is then

Ji,j =
1

2
tr

(

Σ−1(x)
∂Σ(x)

∂xi
Σ−1(x)

∂Σ(x)

∂xj

)

+

[
∂µ(x)

∂xi

]′

Σ−1(x)

[
∂µ(x)

∂xj

]

(64)

APPENDIX B. GRADIENT TERMS FOR BEARING-ONLY FIM

The terms of the gradient of the log-likelihood function (22), when ignoring the range measurements, are

∂λ

∂Tx
=

1

σ2

φ

n∑

i=1

(

φ̂i − φi

)(Ty − Siy

r2i

)

(65)

∂λ

∂Ty
= −

1

σ2

φ

n∑

i=1

(

φ̂i − φi

)(Tx − Six

r2i

)

(66)

∂λ

∂ω
= −

1

σ2
ϕ

n∑

i=1

(ω̂i − ω) (67)

∂λ

∂Six

= −
1

σ2

φ

(

φ̂i − φ
)(Ty − Siy

r2i

)

−
1

σ2

ix

(

Ŝix − Six

)

(68)

∂λ

∂Siy

=
1

σ2

φ

(

φ̂i − φ
)(Tx − Six

r2i

)

−
1

σ2

ix

(

Ŝiy − Siy

)

(69)

APPENDIX C. GRADIENT TERMS FOR FULL-POSITION FIM

The terms of the gradient of the log-likelihood function (22), including the range measurements, are

∂λ

∂Tx
=

n∑

i=1

{

(r̂i − ri)
2
αi − (r̂i − ri)

(
Tx − Six

riσ2
ri

)

− σ2

riαi

}

+
1

σ2

φ

n∑

i=1

(

φ̂i − φi

)(Ty − Siy

r2i

)

(70)

∂λ

∂Ty
=

n∑

i=1

{

(r̂i − ri)
2
βi − (r̂i − ri)

(
Ty − Siy

riσ2
ri

)

− σ2

riβi

}

−
1

σ2

φ

n∑

i=1

(

φ̂i − φi

)(Tx − Six

r2i

)

(71)

∂λ

∂ω
=

n∑

i=1

(r̂i − ri)
2
γi − σ2

riγi −
1

σ2
ϕ

(ω̂i − ω) (72)

∂λ

∂Six

= − (r̂i − ri)
2
αi + (r̂i − ri)

(
Tx − Six

riσ2
ri

)

+ σ2

riαi −
1

σ2

φ

(

φ̂i − φ
)(Ty − Siy

r2i

)

−
1

σ2

ix

(

Ŝix − Six

)

(73)

∂λ

∂Siy

= − (r̂i − ri)
2
βi + (r̂i − ri)

(
Ty − Siy

riσ2
ri

)

+ σ2

riβi +
1

σ2

φ

(

φ̂i − φ
)(Tx − Six

r2i

)

−
1

σ2

ix

(

Ŝiy − Siy

)

(74)
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where

αi =
(
Ty − Siy

)

(

(σ2

φ + σ2

ϕ) sin(φi − ϕi) cos(φi − ϕi)
(
1− cos(φi − ϕi)

)2
σ4
ri

−
sin(φi − ϕi)

r2i
(
1− cos(φi − ϕi)

)
σ2
ri

)

− (Tx − Six)
(σ2

φ + σ2

ϕ) sin
2(φi − ϕi)

(
1− cos(φi − ϕi)

)2
σ4
ri

(75)

βi = (Tx − Six)

(

−
(σ2

φ + σ2

ϕ) sin(φi − ϕi) cos(φi − ϕi)
(
1− cos(φi − ϕi)

)2
σ4
ri

+
sin(φi − ϕi)

r2i
(
1− cos(φi − ϕi)

)
σ2
ri

)

−
(
Ty − Siy

) (σ2

φ + σ2

ϕ) sin
2(φi − ϕi)

(
1− cos(φi − ϕi)

)2
σ4
ri

(76)

γi =
r2i (σ

2

φ + σ2

ϕ) sin(φi − ϕi) cos(φi − ϕi)

(1− cos(φi − ϕi))2σ4
ri

−
sin(φi − ϕi)

(1− cos(φi − ϕi))σ2
ri

(77)
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